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We have developed a fast and robust computational method for prediction of antiviral activity
in automated de novo design of HIV-1 reverse transcriptase inhibitors. This is a structure-
based approach that uses a linear relation between activity and interaction energy with discrete
orientation sampling and with localized interaction energy terms. The localization allows for
the analysis of mutations of the protein target and for the separation of inhibition and a specific
binding to the enzyme. We apply the method to the prediction of pIC50 of HIV-1 reverse
transcriptase inhibitors. The model predicts the activity of an arbitrary compound with a q2 of
0.681 and an average absolute error of 0.66 log value, and it is fast enough to be used in high-
throughput computational applications.

Introduction

Reverse transcriptase (RT) is a key enzyme for the
causative agent of AIDS, the human immunodeficiency
virus (HIV). Inhibition of the function of this enzyme
by means of a modified nucleoside substrate, the
nucleoside reverse transcriptase inhibitor (NRTI) AZT,
was the basis for the first AIDS therapy.1,2 Later it was
found that the function of RT could also be blocked by
noncompetitive inhibitors that show no chemical re-
semblance to nucleosides, the non-nucleoside reverse
transcriptase inhibitors (NNRTI) like TIBO3 and nevi-
rapine.4 This second mode of inhibition is attractive for
drug design because, unlike for the nucleoside inhibi-
tors, little interference with human systems and, there-
fore, low toxicity and side effects were expected. It
turned out, however, that a large number of errors
occurs during the viral replication,5 resulting in a high
mutation rate of RT. Patients treated with current
NRTIs6 or NNRTIs7 in monotherapeutic regimens de-
velop resistance to treatment, because of the emergence
of these mutated strains.

Therefore there is an interest in new compounds that
are highly potent and less susceptible to mutations. In
our design effort for such compounds we need a com-
putational approach that can distinguish inhibitors with
such properties from less useful compounds. As we
intend to assess the effects of different resistance
inducing mutations in the future, a target directed
approach is the most obvious choice because of its
explicit description of such mutations. However, many
target directed methods, like for instance the variants
of free energy perturbation8 and molecular dynamics,9
have the disadvantage that they are computationally
very expensive. In our automated drug design method10

we need to overcome this problem. A faster computa-
tional approximation was developed that can still give
a quantitative binding strength. The method is similar
in nature to the linear interaction energy method,11 but

it focuses only on the most common possible geometries
of the inhibitor-enzyme complex, rather than using a
full dynamics simulation. The method provides an
estimate of inhibitory strength toward the virus (pIC50)
for an arbitrary compound, and a qualitative indication
of potential resistance inducing mutations.

The method generates a number of low energy inhibi-
tor-enzyme complexes by means of conformational
searching and docking. Subsequently a statistical model
is derived that relates inhibition of viral replication with
the localized nonbonded interaction energy contribu-
tions between inhibitor and enzyme residues. Localizing
the interaction energy allows the method to discriminate
between strong binding on an arbitrary part of the
enzyme, strong inhibition of the bare enzyme, and
possibly strong inhibition of the viral replication. The
latter two are not necessarily the same as strong binding
as is illustrated for NNRTIs in the NIAID database12

in Figure 1. This figure shows that ki and pIC50 do not
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Figure 1. pIC50 vs pki of the 68 NNRTI records in the NIAID/
OI Therapeutics Database where both observations are given,
r2 ) 0.624.
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correlate perfectly, even though enzyme and mechanism
of action are identical for all data points.

Materials and Methods
In order to evaluate the interaction energy between RT and

a newly designed NNRTI we first need to generate the relevant
3D structures of the complex. This is done in separate steps:
(1) generate low energy conformers of the inhibitors; (2) dock
the conformers in the enzyme; (3) relax the resulting com-
plexes.

For each of these steps it is required that the method can
progress without user intervention to facilitate automatic drug
design and optimization strategies. It is also important that
the computations can be applied to compounds that may not
belong to existing series. This means that manual docking and
template based activity computations such as those given by
Rizzo et al.13 cannot be used.

Low energy conformers are generated by setting the free
rotatable bonds of the compounds at 60° intervals combined
with inversions of chiral atoms, and local optimization with a
MMFF9414,15-based force-field parametrization. All combina-
tions of up to 7 degrees of freedom are generated exhaustively.
If a compound has more degrees of freedom, the 7 with the
largest effect on the geometry (identified by their rms differ-
ence resulting from either an inversion or a small torsional
variation) are evaluated exhaustively while the remainder of
conformational space is scanned nonexhaustively by means of
a genetic algorithm (GA) with real-valued coefficients for
torsion angles and a single bit chirality. The GA will try up to
10000 attempts to improve one of the best 100 conformers
found at each instant.

This procedure results in a list of up to 1000 low energy
conformers that differ at least 0.25 Å in rmsd. In order to
increase computational speed we will not consider all conform-
ers for the subsequent stage; instead we will test how many
conformers, and what level of internal energy, are needed to
find the geometry of the X-ray structure, on the set of well-
known NNRTIs cocrystallized with RT available from the
Protein Data Bank16 shown in Figure 2. The molecules in this
figure are plotted with the conformation of the X-ray structure
and are all placed in a comparable orientation, by superimpos-
ing the surrounding peptide C-R atoms.

The second stage of the modeling takes a list of low energy
conformers and docks them into the non-nucleoside binding
pocket of wild-type RT. The docking target consists of a 25 Å
region around the NNRTI binding pocket, for which the
coordinates of pdb entry 1s6q17 were used. The binding region
of this structure was supplemented with hydrogen atoms, and
the geometry was relaxed by means of a force-field minimiza-
tion of all atoms except the R-carbons. In order to allow rapid
docking of large numbers of compounds, an interaction grid
method18 that contains contributions of Coulomb and van der
Waals energies was employed. The grid-based energy was
supplemented with a separate hydrogen-bonding term. The
grid dimensions are 200 × 200 × 200 cells at 0.25 Å spacing.
The protein part of the Coulomb interaction is precomputed
for each grid point by adding all the point-charge contributions.
For the van der Waals energy two grids are generated; first a
soft potential function with 1/r4 attraction and 1/r8 repulsion
terms for an initial Monte Carlo steric scan, and second a
standard Lennard-Jones function with 1/r6 attraction and 1/r12

repulsion for the subsequent simulated annealing optimiza-

Figure 2. Test set for conformation search and docking: 46 NNRTIs with the conformation and orientation with which they are
cocrystallized in HIV-1 RT.
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tion. The parameters for both potentials were chosen to
produce an atom-type based geometric mean function that
replicates the potential-well depth and position of our
MMFF9414,15 based force field. The docking hydrogen-bond
terms are implemented by identifying “sweet spots” in the
protein structure, i.e., locations where the interaction energy
can improve by matching a donated hydrogen to an acceptor
atom. This is achieved by adding a negative valued Gaussian
function on these points that approximates the extra energy
contribution for a well-formed hydrogen donor-acceptor pair.

The performance of the docking algorithm is tested by
docking the set of ligands used in the test of the conformational
search into the NNRTI binding pocket grid. Note that we will
use one target structure for cross-docking all these ligands,
not their respective native crystal structures. Being able to
dock in a structure that is not cocrystallized with the ligand
is necessary because we intend to use the method for the
design of novel compounds, where evidently no crystal-
lographic data is available. Because of the focus on new
compounds, for which we do not know a priori which (if any)
pharmacophore is present, we have chosen not to use the
explicit pharmacophore model for docking that we have
presented previously,19 and that we have used in lead opti-
mization, but rather a method that performs an unbiased rigid
multiple conformation interaction energy optimization by
means of a simulated annealing.20

The third part of the procedure, the relaxation of the ligand-
binding site complex, is needed to derive a more accurate
energy-based scoring: The docked molecules are still in their
local optimum structure of the conformation search, as is the
target enzyme. It is necessary to relax the geometry, and to
allow the two systems to adapt to each other into a geometry
that more closely resembles one of the low energy states of a
dynamics simulation. This is performed by means of a local
geometry optimization21 of all complexes where the total
energy of interaction after docking is sufficiently negative. The
method allows any number of complexes to be generated, but
we expect that the contribution to the measured activity of
the compound is dominated by the lowest energy states, as
the Boltzmann factor for an energy difference of only 3 kcal/
mol between two conformers already results in a less than 1%
occupancy of the higher level. For this reason we will limit
the number of complexes we consider for the energy prediction
to those that are within the relatively narrow energy range of
6 kcal/mol from the lowest, and we will generate the final pIC50

prediction in the design application based on the combined
contribution of the complexes within this energy range.

The intended use of the modeling procedure as a high
volume design tool has important implications: It means we
are less interested in avoiding false negatives than normal
docking-screening strategies (as we are not mining databases
for existing potential lead compounds) but we need a very
robust function with respect to false positives (as we do
synthesize the promising compounds we have designed). We
will evaluate the robustness of the method in this respect by
applying it to all 4387 compounds that show a quantifiable
activity in in vitro antiviral testing,22 encompassing all pub-
lished NNRTIs, and a large number of unpublished variants
synthesized in-house since 1989.

Results: Performance of the Conformation
Search

After isolating the inhibitors from the pdb entries,
adding hydrogen atoms (all ligands are considered
neutral), and local optimization of the geometry we
obtain a list of conformers of each NNRTI. An important
condition for a useful conformation search is that it has
to find the locally optimized conformer isolated from the
X-ray structure of the bound inhibitor. We tested this
aspect by randomizing the molecule geometries and
searching for all low energy conformers. The results are
shown in Table 1: We find that all initial NNRTI

structures were reproduced independently in this man-
ner (these are characterized by their less than 0.01 Å
difference with the locally optimized X-ray geometry).
Furthermore, all these structures are within 6 kcal/mol
of internal strain energy relative to the lowest energy
conformer. In 18 out of 46 cases the ligand conformer
taken from the crystal structure was the also the
computed global minimum of the compound. Columns
4, ∆Ecryst, and 5, rankcryst, of Table 1 show the energy
difference between the optimized X-ray geometry and
the lowest energy conformer, and the rank of the X-ray
geometry in the list of conformers. However, for a
number of flexible compounds, which have a large
number of energetically close conformers, the closest
geometry to the X-ray structure has a very high rank
in the list of conformers, despite its only moderately
worse internal energy. In these cases it turns out that
a very similar conformer, where the rms difference with
the crystal is less than 1 Å, is often found at a lower
energy level. Columns 6 and 7 of Table 1 show the
internal energy and rank of these similar conformers.
By using this more relaxed criterion we find 27 out of
46 compounds within 0.1 kcal/mol of the global opti-
mum, and all conformers but one, within 2 kcal/mol. The
two most noteworthy exceptions are the structures from
pdb entry 1rt7 (UC-84), which seems to be in a strained
conformation, and 1s9g (R120394), which, although not
highly strained, seems to be in its highest energy
minimum.

As we will relax the geometry after docking we will
make use of the presence of these conformers close to
the complexed optimum and reduce the computation
time by only docking a limited subset of low energy
forms. Especially for the de novo method10 this poses
no problem, as the algorithm will design another
optimum structure as long as the fitness function
provides enough evolutionary pressure. For benchmark-
ing and database screening, the number of conformers
to evaluate can be increased to attain a required level
of exclusion of false negative, at the cost of extra
computational effort, the worst case in our test set being
entry 1rt7, where the first conformer closely resembling
the crystal has rank number 135. Run times of the
conformation search depend strongly on the number of
degrees of freedom and range from 2 s to 150 min for
the full search on a 500MHZ MIPS R14000 CPU for the
current dataset.

Results: Performance of the Docking Algorithm

The second part of our modeling approach consists of
docking the designed ligand into the target grid. The
same set of NNRTIs that is used for the conformation
search is used as a test set for the docking algorithm.
For each X-ray structure a corresponding region around
the NNRTI-binding site is isolated and optimized. This
optimized structure is used as a reference for the quality
of the docking: The heavy atoms of the protein backbone
atoms of the optimized X-ray structure are superim-
posed on those of the docked and optimized complex,
and the rms difference between the ligand heavy atoms
is computed for the superimposed complexes.

The results are shown in Table 2. The first two
columns again show inhibitor name and pdb code;
column 3, Edock(min), shows the lowest docking energy
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found; and column 4, rms Edock(min), shows the rms
difference between the ligand atoms after the protein
parts of the docked complex and original pdb structure
are superimposed. The fifth column shows the rank
number of the docking that most closely resembles the
X-ray structure (with rms best in column 6 being the
rms difference of the inhibitors, rms BB in column 7
being the difference of the peptide backbone atoms, and
Edock best in column 8 being the accompanying docking
energy). The table shows that 31 out of 46 X-ray
structures are reproduced to within the best resolution
quoted in the pdb-data file; we consider these to be
correctly docked. The 15 rows where this is not the case
are in boldface type in the table. We allow quite a large
difference between docked and crystal structure because
both structures are optimized geometries starting from
different X-ray structures that differ substantially in
geometry, even after relaxation (column7). Figure 3

illustrates a common trait of the poorly docked com-
pounds: Their higher rms deviation is accompanied by
a systematically higher docking energy than the cor-
rectly docked compounds. This means that we can apply
a “low pass” filter to the docking result for novel
compounds by only accepting molecules docked below a
certain threshold energy, thus preferentially weeding
out badly docked ones and thereby reducing the false
positive rate of the prediction.

Another noteworthy feature of the docking results is
the fact that there may be a correlation with protein
mutation and our ability to predict the correct ligand
orientation (which is based on only wild-type geometry).
It appears that mutations of residues M184 and Y188
change the geometry of the binding site so much that
our wild-type model no longer can be applied, while for
the K103, Y181, and K219 mutations this effect seems
to be so much less pronounced that we can successfully

Table 1. Conformational Search of 46 NNRTI Crystal Structures from the Protein Data Banka

compound pdb
rmscryst

(Å)

∆Ecryst
(kcal/mol)
rms ) 0

rankcryst
rms ) 0

∆Esimilar
(kcal/mol)
rms < 1

ranksimilar
rms < 1 Nconf

1051U91 1lw2 0.90 1.32 2 0.00 1 3
1051U91 1rt3 0.91 1.32 2 0.00 1 3
1051U91 1rth 0.00 0.00 1 0.00 1 3
739W94 1jlq 1.84 0.00 2 0.00 2 4
BM+21.1326 1c0t 1.26 0.00 2 0.02 2 2
BM+50.0934 1c0u 0.00 0.00 1 0.00 1 3
DMP-266 1fk9 0.00 0.00 1 0.00 1 2
DMP-266 1fko 0.00 0.00 1 0.00 1 2
DMP-266 1jkh 0.00 0.00 1 0.00 1 2
GCA-186 1c1b 2.13 3.20 37 0.59 3 101
HBY097 1bqm 1.41 5.53 77 0.23 7 84
HBY097 1bqn 1.27 3.75 65 0.23 7 88
HEPT 1rti 1.92 0.65 7 0.65 7 144
MKC-442 1rt1 1.98 3.65 42 0.36 3 93
nevirapine 1fkp 0.00 0.00 1 0.00 1 1
nevirapine 1jlb 0.00 0.00 1 0.00 1 1
nevirapine 1jlf 0.00 0.00 1 0.00 1 1
nevirapine 1lw0 0.00 0.00 1 0.00 1 1
nevirapine 1lwc 0.00 0.00 1 0.00 1 1
nevirapine 1lwe 0.00 0.00 1 0.00 1 1
nevirapine 1lwf 0.00 0.00 1 0.00 1 1
nevirapine 1vrt 0.00 0.00 1 0.00 1 1
PETT-1 1dtq 1.31 5.94 152 0.72 4 459
PETT-2 1dtt 1.38 0.83 4 0.83 4 436
PETT-2 1jlc 1.38 0.83 5 0.83 5 458
R100943 1s6p 1.22 0.42 5 0.00 2 35
R120394 1s9g 2.19 0.71 13 0.71 13 13
R129385 1s9e 0.00 0.04 1 0.00 1 5
R147681 1s6q 0.00 0.00 1 0.00 1 10
R165335 1sv5 0.00 0.00 1 0.00 1 6
R185545 1suq 0.31 0.13 3 0.00 1 21
R82913 1tvr 0.00 0.00 1 0.00 1 13
R86183 1hnv 1.30 2.02 6 0.06 2 12
R86183 1uwb 1.12 2.02 7 0.06 2 14
R95845 1hni 0.90 0.19 3 0.00 1 54
R95845 1vru 0.76 0.08 2 0.08 2 48
S-1153 1ep4 2.14 2.74 76 1.62 31 196
TNK-6123 1c1c 1.54 4.75 72 0.53 5 143
TNK-651 1jla 3.00 3.53 59 0.96 16 126
TNK-651 1rt2 2.99 0.96 17 0.96 17 133
U-90152 1klm 2.72 4.36 175 1.45 43 280
UC-10 1rt5 2.13 1.06 37 1.06 37 114
UC-38 1rt6 1.10 0.55 8 0.22 4 188
UC-781 1jlg 2.44 2.08 108 0.82 25 167
UC-781 1rt4 2.48 2.08 110 1.01 34 178
UC-84 1rt7 2.60 5.86 142 5.59 135 249

a Column 1 shows the compound name, and column 2 shows the originating pdb entry; rmscryst is the rms difference between the
crystal geometry and the best conformer, ∆Ecryst is the internal energy of the crystal geometry minus the internal energy of the best
conformer, rankcryst is the rank order of the geometry of the crystal structure in the list of computed conformers, ∆Esimilar is the internal
energy of the first conformer within 1 Å of the crystal structure, ranksimilar is its rank in the conformation list, and Nconf is the total
number of conformers found within 7 kcal/mol.
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match the ligand position docked in the wild-type pocket
to that in the mutant X-ray structures.

Results and Conclusion

We will use the complex geometries generated by
combining conformation search and docking to predict
the pIC50 of an arbitrary compound. As we want to be
able to deal with any possible structure, we need as wide
a range of structures in the derivation of the model as
possible. To this end we took 4387 compounds with
experimentally determined anti-HIV activity from our
database (comprising protease inhibitors, NNRTIs, NR-

TIs, and others) and produced the docked complexes of
these compounds in our HIV-1 RT model. As is to be
expected, a number of compounds could not be docked
at all (Edock > 0.0) because they are not NNRTIs; this is
especially obvious in the case of very large HIV protease
inhibitors (about 500 out of the 1500 nondocked mol-
ecules). Also a fair amount of complexes showed indica-
tions of suspected poorly docked orientations (Edock >
-20). Such a high docking energy is a negative signal
for the quality of docking in the case of compounds that
have appreciable NNRT inhibitory activity (appreciable
enough to warrant the cocrystallization of the compound

Table 2. Cross-Docking of 46 Locally Optimized NNRTIs from the Protein Data Bank into the Generalized Wild-Type NNRTI
Binding Sitea

compound pdb
Edock(min)
(kcal/mol)

rms
Edock(min)

(Å)

rank
best

match

rms
best

match
(Å)

rms BB
(Å)

Edock
best match
(kcal/mol) mutations

1051U91 1lw2 -29.7 0.49 1 0.49 1.73 -29.7
1051U91 1rt3 -29.7 5.62 5 1.77 2.09 -26.5 K219Q
1051U91 1rth -30.3 1.87 4 1.69 1.79 -30.2
739W94 1jlq -29.6 1.11 1 1.11 1.87 -29.6
BM+21.1326 1c0t -27.8 1.31 3 1.03 1.83 -27.2
BM+50.0934 1c0u -28.4 1.86 1 1.86 1.99 -28.4
DMP-266 1fk9 -30.2 0.93 1 0.93 1.78 -30.2
DMP-266 1fko -30.6 1.38 1 1.38 2.17 -30.6 K103N
DMP-266 1jkh -30.1 0.89 4 0.89 2.11 -26.9 Y181C
GCA-186 1c1b -24.9 7.59 10 5.80 2.10 -18.8
HBY097 1bqm -21.4 7.13 2 0.90 1.48 -21.1
HBY097 1bqn -21.8 5.85 7 3.38 1.67 -16.5 Y188L
HEPT 1rti -27.0 6.33 8 2.97 2.01 -26.4
MKC-442 1rt1 -24.8 6.11 6 4.78 2.13 -19.5
nevirapine 1fkp -30.1 5.83 9 4.89 2.04 -24.4 K103N
nevirapine 1jlb -28.3 3.87 2 1.36 1.89 -27.9 Y181C
nevirapine 1jlf -29.3 6.67 3 4.89 2.15 -27.5 Y188C
nevirapine 1lw0 -30.0 5.81 9 1.57 1.83 -23.4
nevirapine 1lwc -29.9 5.79 10 3.83 1.89 -23.7 M184V
nevirapine 1lwe -27.5 1.37 1 1.37 1.96 -27.5
nevirapine 1lwf -30.1 5.87 6 3.53 2.08 -27.2 M184V
nevirapine 1vrt -30.0 5.76 6 3.80 1.86 -27.1
PETT-1 1dtq -31.2 6.10 6 3.57 1.89 -25.8
PETT-2 1dtt -35.1 1.07 1 1.07 1.94 -35.1
PETT-2 1jlc -36.3 1.19 2 1.09 1.95 -36.2 Y181C
R100943 1s6p -32.2 0.82 2 0.80 1.62 -32.0
R120394 1s9g -28.9 3.45 1 3.45 2.08 -28.9
R129385 1s9e -37.3 1.00 3 0.91 1.74 -37.1
R147681 1s6q -38.5 0.66 1 0.66 0.67 -38.5
R165335 1sv5 -39.1 1.04 2 0.99 1.56 -39.0
R185545 1suq -39.5 0.58 1 0.58 1.71 -39.5
R82913 1tvr -31.5 1.61 2 1.57 1.30 -31.2
R86183 1hnv -33.2 2.57 6 2.44 1.29 -33.1
R86183 1uwb -33.2 2.17 3 1.98 1.31 -33.1 Y181C
R95845 1hni -28.7 5.95 7 5.30 1.51 -23.0
R95845 1vru -28.2 7.01 4 1.10 1.80 -26.0
S-1153 1ep4 -21.4 7.94 3 4.20 2.37 -5.9
TNK-6123 1c1c -34.8 1.33 1 1.33 1.99 -34.8
TNK-651 1jla -24.5 6.56 1 6.56 2.22 -24.5 Y181C
TNK-651 1rt2 -24.2 8.05 2 6.57 2.21 -24.2
U-90152 1klm -22.5 12.20 2 10.81 2.80 -15.4
UC-10 1rt5 -36.7 1.19 2 1.08 1.97 -36.7
UC-38 1rt6 -27.0 5.29 2 1.39 1.98 -26.4
UC-781 1jlg -29.6 1.11 1 1.11 2.01 -29.6
UC-781 1rt4 -31.8 1.58 1 1.58 1.89 -31.8
UC-84 1rt7 -29.0 1.58 3 1.37 1.96 -28.9
a The first column indicates compound name, and the second column indicates the pdb entry code; Edock(min) is the lowest (grid-based)

nonbonded interaction energy, rms Edock(min) is the rms difference between this docked conformer and crystal structure (after local
optimization of docked ligand in complex with the wild-type target and with its original crystal), rank best is the rank of the docked
orientation that is most similar to the ligand’s crystal structure, rms best is the rms difference between this docking and the crystal, rms
BB is the difference between the peptide backbone atoms (C-R, N, O, C) of the optimized X-ray structure and the optimized pocket after
docking, Edock best is the nonbonded interaction energy of the best docked ligand, and mutations indicates which amino acids in the
crystal structure (within the subset of residues used for the docking grid) are different from the wild-type structure used for the docking.
Table rows in boldface type denote the incorrectly docked orientations, which differ more from the crystal structure than the best X-ray
resolution given for the pdb entry.
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with RT), but we need to allow for the possibility that
marginal inhibitors, that were never cocrystallized with
RT, actually bind in such energetically less favorable
orientations.

We will filter out complexes that are incorrectly or
unfavorably oriented by means of a self-consistent
analysis approach. One hundred subsets of approxi-
mately 200 compounds are randomly generated by
picking 30 compounds in 6 activity bins between pIC50
of 4 and 10 from the total dataset. For every subset we
generate a linear fit of interaction energy contributions
to the observed data. This fit is generated by means of
a genetic algorithm that selects specific interaction
energy contributions from the total matrix of ligand-
protein residue interactions. The fitness function that
is minimized by the GA is the average absolute devia-

tion, which is a more robust estimator than the average
squared deviation in data that may have large outliers.23

The gene of a population member consists of a fixed
length list of binary values, indicating either “on” or “off”
state of one particular interaction term. This approach
differs from the stepwise feature variable selection
methods in that the genetic algorithm is able test a large
number of different patterns of variables simulta-
neously, and can create crossovers between different

Figure 3. Distribution of docking energies, in white the
correctly docked NNRTIs, in gray the incorrectly docked ones
(see also Table 2).

Figure 4. Number of compounds in the training set that allow
self-consistent models in light gray, and number of compounds
that do not always allow this in darker gray, both binned by
their measured antiviral activity.

Figure 5. Final self-consistent model, training set contoured
by measurement density and external reference as square
markers. Training set q2 ) 0.681; solid lines indicate a +1 or
-1 log-value range.

Figure 6. NNRTI binding site, with residues involved in the
inhibition model. Light gray area indicates the protein side
chains, dark gray the backbone atoms. The thin lines show
residues that do not contribute energy terms to the prediction.
The molecule in the pocket is a typical potent NNRTI.
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promising sets of variables. This helps to avoid the
problems often associated with stepwise regression; the
GA, for instance, converges to the same optimum,
whether the initial guess for the model consists of all-
on or of all-off genes, essentially simulating stepwise
selection and stepwise removal of variables. Another
feature of this approach is that there is no unphysical
relative scaling of energy contributions involved, as
often occurs in linear interaction energy methods, and
which bears with it a large risk of over-fitting the data.
In this approach a particular contribution either per-
tains to the inhibition region of RT or it does not. We
consider this a more realistic description for this non-
competitive binding site. As a result, for a chosen
binding pocket described by the set of residues, only the
two parameters defining a straight line are optimized.

The GA run is repeated for each of the 100 subsets of
points, resulting in 100 straight-line models where a
number of predicted activities will be far away from the
best line. These points are marked “inconsistent” for this
particular run. They need not be incorrectly predicted,
as we do not know a priori how good the fitted line
through a subset of points actually is, and whether the
current subset is biased by the data selection. Finally
we derive a consensus model based on those complexes
where the best binding ligand conformer was consistent
in at least in 50% of the runs. Figure 4 shows the
numbers of consistent (light gray) and inconsistent
(dark gray) models at each activity bin. The final model
for HIV-1 RT activity prediction is shown in Figure 5;
the training set points are so heavily clustered around
the diagonal that the point density is shown with the
contours (up to 240 data points in a 1 × 1 pIC50 cell). In
this figure 100 independent verification compounds are
plotted, mostly synthesized and all tested after the

generation of the model, for instance from the novel
series of NNRTIs shown in Heeres et al.24

It is not obvious how many degrees of freedom are
really available for the binary residue selection, so the
q2 statistic should be used with caution. To be certain
that we are not overfitting the data by means of this
variable selection approach, we repeated the analysis
of the same interaction energy matrix with all computed
energy values, but with the observed pIC50 rearranged
in random order. The resulting best model after this
randomization is shown in Figure 7. For this random-
ized model, R2 is 0.014 and q2 is 0.011, and all predicted
activities are approximately equal to the average pIC50
of the training set (with a resulting average absolute
error of 1.3). This clearly shows that our modeling
approach does not generate a spurious energy-activity
correlation by means of the residue selection.

We therefore conclude that the model approach that
we have derived is capable of predicting the antiviral
activity of an arbitrary NNRTI by means of a rapid
computation and in a robust manner that does not
require any user intervention. These are the exact
characteristics we need for the automatic drug design
approach of the SYNOPSIS10 program while still being
useful in more traditional drug design methods.24
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